Notes: 13.1 Limits (graphical approach)

EXAMPLE 1:

sketch a graph of

$$
y=\frac{1+3 x}{x}
$$

As x "approaches" ∞ (infinity), the graph gets close to zero. as $x \rightarrow+\infty, y=3$

Notes 13.1

EXAMPLE 1 (continued)

As x approaches zero from the left
$f(x)= \begin{cases}-x+3 & \text { if } x<-1 \\ 3 & \text { if } x \geq-1\end{cases}$

EXAMPLE 2

(c) $\lim _{x \rightarrow-1} f(x)=$ dne

The limit does not exist unless the graph approaches the SAME value from the left side AND right side.

Notes: 13.2 Limits (algebraic approach)

1. Factor, if possible.
2. Cancel like terms, simplify.
3. Substitute numerical value and solve.

EXAMPLE: evaluate the limit, if it exists.
$\lim _{x \rightarrow 3} \frac{x-3}{x^{2}-9}$

13.2 EXAMPLE: evaluate the limit, if it exists.

$$
\begin{aligned}
\lim _{x \rightarrow 3} \frac{x-3}{x^{2}-9} & =\frac{x-3}{(x+3)(x-3)} \\
& =\frac{1}{x+3} \\
& =\frac{1}{3+3}=\frac{1}{6}
\end{aligned}
$$

Therefore, the graph is approaching $1 / 6$ at $\mathrm{x}=3$

1. Factor, if possible.
2. Cancel like terms, simplify.
3. Substitute numerical value and solve.

Write problem and answer using proper notation (no sketch needed...use Desmos for \#29,30)

17-20 Limits from a Graph For the function f whose graph is
given, state the value of the given quantity if it exists.
17.a) $\lim _{x \rightarrow 1^{-}} f(x)=2$
(b) $\lim _{x \rightarrow 1^{+}} f(x)=3$
(c) $\lim _{x \rightarrow 1} f(x)=d n e$
(d) $\lim _{x \rightarrow 5} f(x)=4$

Tip: scroll down to see graph in ebook.

$$
\text { (e) } f(5)=\text { undefined }
$$

